










regulators (Supplemental Table II) included the following top
Z-scoring upstream regulators for all three cell lines expressing
LY6S-iso1: TNF (#1 in the list, with Z scores of 3.3, 5.0, and 5.3 for
M12, U87, and YDFR cells, respectively), tetradecanoylphorbol ace-
tate (#2; 3.6, 4.4, and 4.3), IL-1B (#3; 2.4, 5.1, and 3.6), LPS (#4; 2.9,
5.3, and 2.8), IL-17A (#5; 2.2, 4.7, and 4.0), NF-kB (complex) (#7;
3.0, 4.4, and 2.9), ERK (#10; 3.1, 3.2, and 3.4), IKBKB (#12; 2.7, 4.1,
and 2.6), IL-1A (#13; 3.2, 3.7, and 2.7), and IL-1 (#16; 3.2, 3.7, and
2.4). Additional upstream regulators included poly(rI:rC)-RNA
(#20; 2.4, 3.8, and 2.9), TGF-B1 (#23; 2.4, 2.2, and 4.1), TLR3 (#25;
2.5, 3.6, and 2.5), and TLR9 (#26; 2.4, 3.8, and 2.5).

DISCUSSION

This study documents a previously unannotated human
gene now designated LY6S. Analyses both at the RNA and
protein levels, as well as TransMap and public domain
RNA-seq data, provide evidence for the existence of the
LY6S gene. At the RNA level, cloning and sequencing of
the cDNA products generated by RT-PCR of human spleen
samples showed mRNAs that code for three LY6S iso-
forms: LY6S-iso1 codes for a cell-surface protein, whereas
LY6S-iso2 and LY6-iso3 code for secreted proteins. LY6S-
iso1 has the �fingerprint� features characteristic of the
large LY6 protein family, including (1) spacing of cysteine
residues, (2) exon/intron makeup, (3) the cysteine-cysteine
doublet, followed by (4) the cysteine-asparagine doublet.
What differentiates it from other LY6 family members is
the consensus sixth cysteine residue replaced in LY6S-iso1
by a serine residue. We are unaware of any other member

of the LY6 protein family that shows this deviation from
the LY6 consensus. Because the unpaired, nondisulfide
cysteine residue is now free to form disulfide bonds with
unbonded cysteine residues in other proteins, the odd
number (9) of cysteine residues in LY6S-iso1 likely affects
LY6S-iso1 protein interactions. Yet 9 of the 10 consensus
LY6S cysteine residues are retained in the LY6-iso1 pro-
tein, indicating that the four disulfide bridges formed
between the LY6 consensus cysteine (C) residues C#1 and
C#5, C#2 and C#3, C#7 and C#8, and C#9 and C#10 (8)
should all be intact. Snake toxins that contain eight cyste-
ine residues, associated with four disulfide bridges, form
the characteristic three-finger structure (7), as do the LY6
proteins that have five disulfide bridges (30). Furthermore,
the N-terminal LU/uPAR domain of uPAR lacks a cysteine
pair (31), yet still forms the LU/uPAR domain. It is reason-
able to assume, therefore, that the LY6S-iso1 protein also
adopts a TFP structure.

Although the data indicate that human LY6S is homologous
to the Ly6a subfamily of LY6 genes, we do not know whether
LY6S is the ortholog of a single gene of the murine Ly6a sub-
family, or whether all eight murine genes and their protein
products are an expansion of the solitary human LY6S gene.
The phylogenetic analysis, as well as our additional similarity
analyses, show that the eight murine Ly6 genes constitute a
gene cluster, in which an ancestral gene likely underwent sev-
eral duplication events, thereby forming the Ly6a subfamily
cluster. Moreover, the TransMap algorithm of the UCSC
(University of California, Santa Cruz) genome browser maps
Ly6a to the human LY6S gene. These considerations led us to
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FIGURE 9. Inhibition of viral replication in cells expressing the LY6S-iso1 protein.

Human melanoma cells [YDFR-CB3 and M12-CB3, shown in (a) and (c)] or human glioblastoma cells [U87, shown in (b)] as indicated, were stably

transfected with an empty expression vector (control) or with an expression vector coding for LY6S-iso1 (LY6S-iso1). VSV was added to the cell cul-

tures, and virus present in the spent medium was assayed on monkey Vero cells, starting with a 100-fold dilution, followed by 10-fold dilutions.

Quantitation of the viral titer in the spent medium of the virally infected cultures is shown in (d) (for YDFR cells, at 100-fold dilution, 48-h time point,

and multiplicity of infection [MOI] of 0.05; for U87 cells, at 1,000-fold dilution, 48-h time point, and MOI of 0.015; and for M12 cells, at 100-fold dilu-

tion, 24-h time point, and MOI of 0.005). The number of viral plaques is indicated in square brackets above the bars for the respective cell types.
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FIGURE 10. Volcano plot and heatmap of genes differentially expressed in LY6S-iso1–expressing U87 cells and profiling of selected secreted

cytokines/chemokines.

(a and b) RNA extracted from triplicate cultures of puromycin-resistant U87 cells stably transfected with pQCXIP vector coding for LY6S-iso1 or

with vector alone were subjected to RNA-seq analysis as described in the Materials and Methods, and the differential gene expression between the

two groups is represented as a volcano plot (a) and as a heatmap (b). A selection of the differentially expressed genes was color coded as follows:

chemokines, light blue; chemokine receptors, red; cytokines, green; inflammation, purple; IFN related, orange; others related to inflammation and

also differentially expressed to a great extent, black. (c) Spent culture medium from U87 cells stably transfected with control pQCXIP plasmid

(U87[control], ci and ci�) or from U87 cells stably transfected with plasmid coding for LY6S-iso1 (U87[LY6S-iso1], cii and cii�) were assayed for

secreted cytokines and chemokines using a human cytokine/chemokine array. The probed arrays were exposed for either 10 min (ci and cii) or 10 s

(ci0 and cii0). Cytokines/chemokines increased in the LY6S-iso1–expressing cells are indicated in red fonts; cytokines/chemokines whose expression

remains unchanged are indicated by gray fonts (CCL2 and CXCL12 slightly downregulated in the LY6S-iso1–expressing cells are indicated with dark

gray fonts). (d) Side-by-side comparisons of the chemokines/cytokines upregulated in U87[LY6S-iso1] cells using optimal exposure times. MIF pro-

vides an internal control for equal loading of spent medium from both cell types (lower two panels). Quantitation for the fold increase in the

secreted cytokines was performed by ImageJ analyses.
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conclude that this is a one-to-many orthologous relationship,
and LY6S is the human ortholog of the Ly6a subfamily genes.

Genes of the murine Ly6a subfamily play pivotal roles both
in inflammation and in hematopoietic stem cells (e.g., Refs.
32�36), and many of the Ly6a subfamily genes are related both
to an inflammatory cell phenotype and to IFN-related pathways
(18, 19). Just like the genes of the Ly6a subfamily, it appears
from our analyses that LY6S is also involved in inflammatory
processes. RNA-seq analyses in three different human cell lines
showed that expression of the LY6S-iso1 protein is associated
with the expression of genes coding for chemokines, cytokines,
and other proteins classically connected to an inflammatory cell
phenotype. These findings lend further support, in addition to
that provided by the phylogenetic and protein similarity analy-
ses, to the notion that LY6S has a one-to-many orthologous
relationship with the genes of the murine Ly6a subfamily gene
cluster.

Like the genes of the Ly6a subfamily, the human LY6S
gene is also an ISG. By inducing expression of hundreds of
genes, IFNs and the protein products of the induced ISGs are
critical players in the restriction of viral infections. In line
with our findings that LY6S expression is both IFN inducible
and associated with increased expression of genes related to
inflammation and immune responses, we observed that LY6S-
iso1 expression markedly inhibited viral replication, a phe-
nomenon seen in each of the three different human cell lines
investigated. This is likely indirectly mediated by LY6S-iso1,

which, as noted earlier, leads to altered patterns of gene
expression, which in turn affects virus replication. Thus, one
of the functions of LY6S may be to elicit protection from viral
infection, as already noted for LY6E (37).

LY6S expression at the RNA level was highest in spleen,
whereas it was undetectable in bone marrow and peripheral
blood leukocytes. At the protein level, immunostaining analyses
identified the LY6S-iso1 protein in �5% of all spleen cells, yet
it could not be detected in classical lymphoid-rich tissues, such
as thymus and tonsil. These findings suggest that the LY6S1

cells are likely not of a known classical hematopoietic or lym-
phoid cell lineage. In this respect, the expression pattern of
LY6S in cells and tissues is different from that of murine Ly6a,
which, in contrast with LY6S, is expressed in peripheral blood
leukocytes, on lymphoid precursor cells and hematopoietic
stem cells in the mouse bone marrow (38, 39), and in many
CD41 T cells in the spleen.

In line with the notion that LY6S expression does not desig-
nate a classical cell of the human myeloid lineage, immunofluo-
rescent analysis for expression of CD11b, a prototypical marker
of human macrophages and possibly for many cells of human
myeloid lineages, failed to show significant colocalization in the
spleen with LY6S-expressing cells, just as classical T and B cell
markers also failed to colocalize with LY6S expression. However,
�10% of all CD451 spleen cells, a pan-leukocyte marker, are
also LY6S1 (see Fig. 7d), and very few CD11b1 cells, amounting
to <1% of these cells, are also LY6S1. Certain subsets of spleen

FIGURE 11. A comparison of the differentially expressed genes in the U87, M12, and YDFR cell lines that express the LY6S-iso1 protein.

The upregulated genes in the cells expressing the LY6S-iso1 protein as compared with their respective control non-LY6S-iso1–expressing cells are

represented as a Venn diagram, using the stringent criteria of adjusted p < 0.05, maximum counts > 30, and a fold change > 2. The actual fold

change for each cell line for the six genes that are upregulated in, and common to, all cell lines is shown in the top box (green, red, and blue fonts

representing the U87, M12, and YDFR cells, respectively). The fold changes for certain chemokines (CXCL and CCL) and IL proteins are shown in

the bottom left and bottom right boxes (dashes indicate no gene expression).
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macrophages, such as red pulp, marginal zone, and marginal
metallophilic macrophages, do not express high levels of CD11b,
if at all, and because of this, the LY6S1 cells may belong to such
a subset.

In an attempt to learn more about the LY6S-iso11 spleen
cells, we queried publicly available human spleen single-cell
RNA-seq data, but because of their limited gene coverage and
low sensitivity, LY6S-iso11 cells could not be identified in the
available single-cell RNA-seq datasets. Sorting of human spleen
cells with the anti�LY6S-iso mAbs that we have generated into
LY6S-iso11ve cells and LY6S-iso1� cells, followed by RNA-seq
analyses, might assist in the future identification of the [LY6S-
iso11] cell type.

In summary, to our knowledge, we have identified the new
IFN-inducible human LY6S gene that is likely the long-sought
human ortholog of genes belonging to the Ly6a subfamily. LY6S
is expressed in a discrete subset of human spleen cells of a
nonclassical lineage, and its expression is associated with an
inflammatory cell phenotype and with the restriction of viral
replication. Of particular therapeutic clinical interest are the
recent findings showing that Ly6e and Ly6a serve as receptors
for viral entry into the cell. Ly6e is a receptor for HIV (40),
and Ly6a, expressed on the surface of murine brain endothelial
cells, is the cell receptor for a recombinant adeno-associated
virus (AAV-PHP.B), via which AAV-PHP.B can penetrate the
blood�brain barrier and transduce gene cargo into the brain
(41�45). Our findings indicate that human LY6S is the ortholog
to the genes of the murine Ly6a subfamily, and as we have
observed LY6S expression in human brain tissue, the discovery
of LY6S as reported in this article may open up new possibili-
ties for introducing therapeutic genes into the human brain.
Furthermore, the LY6S proteins may serve as receptors for
additional pathogenic viruses, thus leading to novel antiviral
therapeutic strategies.
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