


(73 nM) in the context of the ITAM-shuffled TCR (Fig. 6C,
Supplemental Fig. 3C, square) was similar to its IC50 measured
with the CD19 CAR activator (168 nM) (Fig. 6C, triangle), dem-
onstrating that invTCRs inhibit TCRs as they do CARs.

DISCUSSION

Since the invention of CARs, it has been known that ICDs from
CD3 subunits and other activating immune receptors can be
stitched together to serve in T cells as signaling components of
monomeric membrane proteins with Ab-based ligand-binding
domains (13, 14). These first-, second-, and third-generation
CARs convert Ag binding into signals that stimulate T cell prolif-
eration and cytotoxicity much like native TCRs (see Ref. 27 for
review). Second- and third-generation CARs have been used in
the clinic as components of cell therapeutics and achieved note-
worthy success (28–31). Most engineering for therapeutic pur-
poses has been restricted to CARs, as opposed to TCRs, given
the CAR�s tolerance for alterations (32). TCRs have been typical-
ly used in their native form or with minor sequence changes
that involve introduction of stabilizing disulfide bonds or swap-
ping of mouse constant domains to facilitate desirable H-L-chain
pairing in human cells (33–35). Notable exceptions are: 1) chime-
ric TCRs with an scFv fused to the N terminus of the TCR/CD3
subunits, creating a TCR/CD3 hybrid receptor that transduces
non-pMHC ligand binding into TCR signaling (36) and 2) single-
variable-domain TCRs that function in the context of a TCR-like
CD3 complex to signal (37). These studies demonstrate the resil-
ience of the N terminus of the TCR with regard to structural
perturbations. However, they also reveal that the extraordinary
sensitivity of the TCR cannot be simply co-opted by grafting a
different ligand-binding domain onto the structure. The ligand-
binding domain itself, rather than the receptor signaling sequen-
ces and structures, appears to play a dominant role in dictating
receptor sensitivity. The observation that TCRs can accommo-
date charge-swapped subunits that preserve net charge neutrali-
ty, and even a situation in which one transmembrane residue is
switched from negative to positive (CD3g E122K), further sug-
gests more plastic structure-function behavior than might be ex-
pected from the high conservation of TCR/CD3 primary
sequences in the transmembrane segments and ICDs.

We sought to build TCRs with distinct signaling properties:
for example, which invert ligand-binding signals that normally
activate T cell response. We were surprised by how tolerant
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FIGURE 4. Reconstitution of inverter TCR in DITAMCD3 Jurkat NFAT

luciferase cell line.

(A) Inverter CD3 subunits were generated by replacing the CD3 ICD

with the ICD of LIR-1. These inverter CD3 subunits were expressed in

clone 32 along with TCRa/b against A*02:01-NY-ESO-1. To determine

the IC50 of the inverter TCR, they were coexpressed along with activat-

ing CD19 CAR, which reacts with CD19 expressed on the surface of

T2s. (B) The reconstituted inverter TCR IC50 was compared with previ-

ously characterized inhibitory Ftcr- and scFv-LIR-1 fusions against

A*02:01-NY-ESO-1 pMHC (19). Inhibitory activity against CD19 CAR

was very similar between scFv-LIR-1, Ftcr-LIR-1, and invTCR. (C) Two

types of ICDs were appended to inverter CD3 domains, and their IC50s

were compared: LIR-1 ICD (purple) or the region that contains ITIM 3

and 4 in the native CD3 backbone (orange).
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the TCR structure is with regard to C-terminal modification,
accommodating a variety of C-terminal fusions, including glob-
ular domains and extended sequences. Potential activating do-
mains were selected from the set of proteins known to
participate directly in T cell activation via the TCR, spanning
the main arms of downstream signaling (38). Interestingly,
none of the TCR fusions improved acute sensitivity. This sug-
gests that recruitment of the proteins tested in our TCR-fusion
experiments, including CD28, is not rate-limiting for TCR acti-
vation in vitro. In contrast, it is known that CARs with ITAM-
containing ICDs derived from CD3z or FceRIg are not suffi-
cient to fully activate proliferation in acute primary human and
mouse T cell assays (39–41). The addition of a costimulatory
domain in tandem provides either a quantitatively or qualita-
tively different signal that boosts acute response in both prima-
ry T and Jurkat cells (41). Notably, our assays were performed
in Jurkat cells, which express many, but not all, of the proteins
used to create the fusions. Although Jurkat cells do not contain
all the components identified through study of normal T cell bi-
ology [e.g., PTEN, SYK, SHP-1, CTLA-4 (42)], we have shown
that acute receptor sensitivity measured in Jurkat cells corre-
lates with primary T cells (32). Thus, the lack of acute effect in
Jurkat cells may be explained by the parent molecules� avail-
ability for recruitment into the signaling complex. Alternatively,
the fusion proteins may not be positioned in an optimal way to
function in acute signaling. Indeed, it is possible that the fu-
sions compromise the function of TCRs in some fashion, which
only a subset of fusions are able to partially offset.

The result that the acute signaling function of CD3 can be
totally replaced by ITAMs on the TCR a/b-chains is remark-
able but consistent with data from careful comparisons of
CARs and TCRs that reveal very little difference in response
properties when corrected for functional sensitivity to Ag. We
should point out that this statement may be controversial, but
we believe that many studies focus on binding affinity, rather
than functional sensitivity. We and others have shown that
these parameters are only weakly correlated in CARs, as in
TCRs [(12, 32); see Ref. 43 for review]. Our results are consis-
tent with quantitative experiments of James (15) who investi-
gated sensitivity in Jurkat cells using a CAR-like scaffold. He
showed that a single ITAM could mediate some activation,
with a big inflection in the response curve at three ITAMs/
TCR. His results are extended in this study to include TCRs
with different ITAM numbers with respect to sensitivity.
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FIGURE 5. Construction of charge-swapped twin TCRs.

(A) Cartoon representation of engineered TCR transmembrane interac-

tions. In the native TCR–CD3 complex, the positively charged K288 of

TCRb interacts with corresponding negatively charged residues of

CD3e (D137) and CD3g (E122). These charge-pairs were mutated to

K288D and D137K/R and E122K/R to generate distinct TCR complexes.

(B) Jurkat NFAT luciferase activity of charge-swapped TCRb–CD3e/g

complex. In wild-type Jurkat cells, either wild-type TCRa/b or wild-

type TCRa and K288D TCRb were coexpressed with or without corre-

sponding CD3e/g mutants. Rescue of NFAT response was measured.

(C) Cartoon representation of ITIM3/4-substituted transmembrane

domain mutant TCR–CD3 complex. TCRa-CD3z transmembrane mu-

tation (cyan star) and TCRb-CD3g transmembrane mutation (black

star) are described in dotted boxes. (D) Jurkat NFAT luciferase activity

of charge-swapped invTCRa/b–CD3g/z complex. In clone 32 Jurkat

cells, CD19 CAR was expressed with or without charge-swapped TCRb

with ITIM-fused charge-swapped CD3g/z. Inhibitory activity was mea-

sured by coculturing with NY-ESO-1(v) peptide-loaded T2 cells.

356 GENERATION OF AN INVERTER TCR ImmunoHorizons

https://doi.org/10.4049/immunohorizons.2100033

 by guest on January 22, 2022
http://w

w
w

.im
m

unohorizons.org/
D

ow
nloaded from

 

http://www.immunohorizons.org/


To induce inhibitory rather than activating signals, we
substituted ITIM sequences for the CD3 ITAM domains. We
showed that we could create an invTCR with sensitivity toward
a CD19 CAR within the range of other potent blocker modules
seen before but not as sensitive as the best activating TCRs
(19). Allen and colleagues (44, 45) first described a phenome-
non they called altered-peptide ligands (APLs), whereby
pMHC agonists could be converted into nonagonists�even an-
tagonists�by single amino acid substitutions in the peptide.
They subsequently explained this behavior by differences in
off-rates of the TCR/pMHC complexes; faster off-rate variants
produced lower activation (46). However, the details of the
APL mechanism with respect to signaling are still imperfectly
understood (47). Some have postulated that APLs trigger a neg-
ative signal from the engaged TCR, but there is evidence
against this view (48). We believe that the invTCRs described
in this study are examples of TCRs that directly transform
ligand binding into a negative signal, mediated via the ITIM
mechanism of T cell checkpoint control.

Apart from the focus on in vitro sensitivity and not T cell de-
velopment, our study has limitations. We measured acute sensi-
tivity of variant TCRs in Jurkat cells, and it is possible that some
of the constructs tested in this study (e.g., the fusions to CD28)
may provide benefit in long-term contexts for primary T cells, in-
cluding cell therapy where exhaustion is thought to limit efficacy
in vivo (49). The studies focused on a single TCR, the ultrasensi-
tive optimized clinical NY-ESO-1 TCR. It is possible that some of
the results may not generalize to other TCRs or to more native
situations in which expression levels are regulated endogenously.
Finally, we studied the response of Jurkat cells using the NFAT
promotor fusion and did not assess other signaling pathways in-
volved in TCR function. In addition, we were not able to achieve
the sensitivity level on the inhibitory side with invTCRs, which
wild-type TCRs display routinely for activation.

Ease of engineering has prompted use of CARs in dual-sig-
nal integrators for synthetic cellular logic gates (50). The poten-
tial of creating two TCRs whose subunits do not comingle
using charge-swapped transmembrane domains may provide an
avenue for TCRs to be used in these logic systems. TCRs have
the virtue that they arise in the body with exquisite sensitivity
and selectivity against pMHC Ags. The capacity of TCRs to ac-
commodate C-terminal fusions offers opportunities to modify
TCR behavior in cis, for example, through inverting specific
pMHC signals. Such behavior, if optimized, may prove useful
for AND NOT signal integration in which the inhibitory signal
is derived from pMHCs, such as minor histocompatibility Ags
(6, 19). If the results generalize to other TCRs (e.g., to class-
II–restricted TCRs), modified TCRs might provide an
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FIGURE 6. Characterization of C-terminally ITAM- or ITIM-fused

TCRa/b.

(A) Cartoon representation of ITAM-shuffled KRAS TCRa/b (KRAS TCRa/

b-zITAM) expressed with or without ITIM-shuffled TCRa/b (NY-ESO-1

TCRa/b-zITIM) in cells in the presence of DITAMCD3 subunits. (B) NFAT

luciferase response of wild-type TCRa/b coexpressed with either

DITAMCD3 (open circle) or wild-type CD3 (closed circle) and ITAM-

shuffled TCRa/b coexpressed with DITAMCD3 subunits (triangle) in Jur-

kat cells. (C) IC50 curves of ITIM-shuffled NY-ESO-1 TCRa/b against

either CD19 CAR or ITAM-shuffled KRAS TCRa/b. To test ITIM-shuf-

fled NY-ESO-1 TCRa/b activity against ITAM-shuffled KRAS

TCRa/b, transfected Jurkat cells were cocultured with T2s expressing

both A*02:01 and A*11:01 loaded with 1 mM KRAS G12D peptide and ti-

trating amounts of NY-ESO-1 peptide.
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alternative means to modulate response to specific Ags. For ex-
ample, invTCRs might be used to inhibit reactivity toward spe-
cific self-antigens in a subset of a patient�s T cells in an Ag-
dependent manner without eliminating portions of the TCR
repertoire. From a practical perspective, the invTCR will likely
need further development for use in primary T cells because
the presence of some ITAMs in the complex (i.e., from wild-
type CD3z and CD3g) prevents signal inversion (i.e., creates an
activator; Supplemental Fig. 2D). With CAR activators, this
problem can be eliminated by removal of wild-type CD3 ex-
pression in the host cell. If invTCRs are paired with TCRs as
opposed to CARs, proper subunit segregation will need to be
enforced, for example, by improved specificity of the charge--
pair interactions described in this article to explore invTCR
function.

In conclusion, by exploring C-terminal and transmembrane
variants of the TCR, we have uncovered a surprising degree of
structure-function flexibility. Specifically, we have shown that
1) the C termini of the TCR can be fused to additional sequen-
ces, preserving acute function; 2) the ITAM domains can be
eliminated from all CD3 subunits and fused to the TCRa/b
subunits to create a receptor that is very similar to the wild-
type TCR in acute assays; 3) ITAMs dominate ITIMs if they
are present in the same TCR/CD3 complex, but if the ITAMs
are replaced by ITIMs, signaling is inverted and the TCR be-
comes a ligand-gated inhibitory receptor; and 4) conserved,
charged residues in the transmembrane domains of the TCR/CD3
complex can be swapped to create functional TCRs, a further in-
dication of the robust mechanism that operates in acute TCR sig-
naling. These results suggest opportunities for design of TCR-
based receptors that extend well beyond those that have been
used in T cell therapeutics to date.
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