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Navigating in Deep Waters: How Tissue Damage and
Inflammation Shape Effector and Memory CD8+ T Cell
Responses

Henrique Borges da Silva
Department of Immunology, Mayo Clinic, Scottsdale, AZ

ABSTRACT

Memory CD8+ T cells promote protective immunity against viruses or cancer. Our field has done a terrific job identifying how CD8+ T

cell memory forms in response to Ag. However, many studies focused on systems in which inflammation recedes over time. These

situations, while relevant, do not cover all situations in which CD8+ T cell memory is relevant. It is increasingly clear that CD8+ T cells

with a memory phenotype form in response to infections with extensive or prolonged tissue inflammation, for example, influenza,

herpes, and more recently, COVID-19. In these circumstances, inflammatory mediators expectedly affect forming memory CD8+ T

cells, especially in tissues in which pathogens establish. Notwithstanding recent important discoveries, many outstanding questions on

how inflammation shapes CD8+ T cell memory remain unanswered. We will discuss, in this review, what is already known and the next

steps to understand how inflammation influences CD8+ T cell memory. ImmunoHorizons, 2021, 5: 338–348.

INTRODUCTION

Immunological memory can be characterized by the presence
of Ag-specific adaptive immune cells with enhanced ability to
respond to secondary Ag encounter. The acquisition of immu-
nological memory is paramount for the protection against path-
ogen reinfections and is the desired goal of vaccination
protocols (1--3). Although the development of humoral immuni-
ty (i.e., B cell--dependent) promotes the protection against
many infections and is the basis of most existing vaccines, there
are diseases for which either humoral immunity is less relevant
(e.g., tuberculosis) or B cell--inducing vaccines do not exist
(e.g., HIV, malaria) (4). In situations for which the relevant Ag
is present inside cells, the development of cytotoxic memory
CD81 T cells is fundamental, given CD81 T cells are key in
cell-mediated immunity and the clearance of intracellular
pathogens (2). This is also true for cancer, for which the

elimination of tumor cells requires CD81 T cells in many cases,
and the harnessing of CD81 T cells with memory-like charac-
teristics promotes enhanced tumor control (5).

Understanding how CD81 T cell memory forms has been
and still is a fundamental part of the cellular immunology field.
Thanks to seminal works, we have a consensual view of how
Ag-specific memory CD81 T cells are generated. Notwithstand-
ing these fundamental discoveries, they mostly used model in-
fections and immunizations for which acute inflammation is
present. Acute inflammation, albeit a relevant factor, recedes
swiftly over time because of quick pathogen or Ag elimination.
It has been increasingly appreciated, also, that elements of the
tissue microenvironment help shape CD81 T cell responses
(6--9). In response to infections that induce increased tissue in-
flammation, memory CD81 T cells are found. This is true in
the context of influenza (10--12) or herpes (13, 14). Therefore, it
is likely that the quality, duration, and intensity of the
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inflammatory context will differentially affect memory CD81 T
cell generation and maintenance. How and whether memory
CD81 T cells form and respond to distinct inflammatory stimu-
li is currently being investigated by many groups, and we are
only now beginning to understand these concepts. This is espe-
cially important nowadays, as COVID-19 (caused by the SARS-
CoV-2 virus) protection may rely on CD81 T cell memory re-
sponses (15), and this disease is characterized by intense tissue
inflammatory responses (16, 17). In this review, we will focus
on how inflammation affects the establishment and function of
memory CD81 T cells. We will also discuss how established
memory CD81 T cell populations are influenced by systemic or
local inflammation. Finally, we will convey the next steps need-
ed for our complete understanding of how inflammation shapes
the memory CD81 T cell pool, highlighting the main unex-
plored information �seas� on this matter.

At the surface: Molecular and cellular basis of memory
CD81 T cell differentiation and survival
In the past few decades, many papers unveiled how Ag-specific
CD81 T cells clonally expand and differentiate into terminal ef-
fectors (TEs) or multiple memory cell subsets. Memory CD81

T cells survive in the long-term and display enhanced respon-
sivity to secondary Ag encounter. Many cell-intrinsic and -ex-
trinsic signals are instrumental in the effector-to-memory
transition and memory CD81 T cell survival.

Metabolic and transcriptional regulation of CD81 T cell effec-
tor expansion and memory precursor generation. Naive CD81

T cells are generated in the thymus and migrate to the periph-
ery. After engagement with cognate Ag (together with costimu-
latory pathways and tertiary signals), CD81 T cells display
many metabolic and transcriptional changes (18). Recently acti-
vated CD81 T cells first increase oxidative phosphorylation,
quickly followed by a switch to aerobic glycolysis, a metabolic
state characterized by diversion away from mitochondrial respi-
ration pathways (19). These changes are accompanied by acti-
vation and robust clonal expansion (20). Increased aerobic
glycolysis in effector cells allows energy production to be quick-
er in response to stimulation and simultaneously promotes the
biosynthesis of proteins and other molecules needed to produce
effector molecules (19).

Throughout the acute Ag effector phase, Ag-specific CD81

T cells expand but not uniformly. Already at the early effector
phase, effector CD81 T cells can be distinguished by the ex-
pression level of IL-2Ra or CD25. CD25hi early effectors are
sensitive to IL-2. As a result, they proliferate more extensively
but are more prone to apoptosis. In contrast, CD25lo early ef-
fectors are less sensitive to IL-2. These cells, conversely, in-
crease the expression of IL-7Ra or CD127 and L-selectin
(CD62L) (21). CD127, for instance, marks a subset of effector
CD81 T cells that can survive T cell contraction and give rise
to memory CD81 T cells; these cells are deemed �memory pre-
cursors� (MPs) (22, 23). Conversely, effector CD81 T cells that

express the killer cell lectin-like receptor G 1 (KLRG1) will
mostly contract; these effector CD81 cells are called TEs (23).
Distinct molecules drive the fate of effector CD81 T cells into
the MP versus the TE phenotype. For example, expression of
the transcription factors Blimp-1 and ZEB2 promote the TE
phenotype in CD81 T cells (24, 25). In contrast, the transcrip-
tion factors TCF1, LEF-1, and Bcl-6 induce the MP phenotype
in these cells (26--28). Overall, the terminal differentiation of
CD81 T cells is reliant on an increase in pathways related to
effector function. Conversely, the induction of an MP pheno-
type is correlated with the acquisition of quiescence and stem-
ness at the expense of effector function. Thus, both effector
CD81 T cell groups are important, one for the direct pathogen
elimination during acute responses and the other for generation
of memory CD81 T cells.

Circulating memory CD81 T cell subsets. After Ag clearance,
most TE CD81 T cells die. It should be noted that CD81 T cell
contraction does not depend on Ag clearance because it also oc-
curs when pathogen is not completely eliminated (29, 30). Dis-
tinct memory CD81 T cell subsets arise from MP cells, and
they can be divided based on distinct aspects. There is current-
ly much talk about how we as a scientific community should
define these subsets (31, 32). In this study, we will focus on mi-
gratory properties to subdivide memory CD81 T cells (Table I).
Two memory CD81 T cell subsets were initially defined. Cen-
tral memory CD81 T cells (Tcm), which express the secondary
lymphoid organ-homing molecules CCR7 and CD62L, are
mainly found within the spleen and lymph nodes, lack immedi-
ate effector function and have increased ability to generate sec-
ondary immune responses. Effector memory CD81 T cells
(Tem) lack expression of these markers, displaying receptors
that promote the migration back and from other tissues and
have a better ability to readily produce cytokines (33--35). The
current view of circulating memory CD81 T cells is much
more complex. The Tcm subset is still somewhat homogeneous,
but they are not the only subpopulation of memory CD81 T
cells with quiescence and stemness. In humans and nonhuman
primates, a population of stem cell--like memory CD81 T cells
(Tscm) has similar functional characteristics as Tcm but is phe-
notypically similar to naive CD81 T cells (36). As for the previ-
ous Tem pool, they currently comprise an amalgam of three
main subsets. Many of the cells found in nonlymphoid tissues
reside long-term in these sites; these cells are now denominated
tissue-resident memory CD81 T cells (Trm); there is more on
this subset below. Among the non-Tcm found in the circulation
and lymphoid organs, two subsets are found. Tem are derived
from MPs, do not express lymph node--homing molecules, and
have the characteristics previously described (i.e., lower stem-
ness and half-life and quicker cytokine production) (37). More
recently, a new population of non-Tcm was described to have
an identical phenotype as TE cells but was found long after Ag
clearance. These cells, called �long-lived effector cells� (LLECs)
(38, 39), perform superior recall responses against Ag, despite
decreased proliferation (38). Tcm, Tem, and LLEC all rely on
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IL-15 for their survival (38, 40). Tcm and Tem also display IL-
7R in their surfaces and rely on this cytokine for survival, main-
ly through the antiapoptotic protein Bcl-2 and expression of
Aquaporin-9 (41--44).

Tissue-resident memory CD81 T cells. Over the last two deca-
des, important studies defined that some memory CD81 T cells
permanently reside in nonlymphoid tissues (45, 46). Trm can
be defined, in many cases, by tissue residency markers, such as
CD69 and/or CD103, with a concomitant lack of CD62L and
KLRG1 (30). Trm are defined in mouse models through either
lack of intravascular Ab staining (47) or by lack of recirculation
after parabiosis surgery (48). The notable exception for intra-
vascular labeling is the liver, where Trm (defined as resident
by parabiosis) are positioned in the intravascular sinusoids (49).
Trm function by patrolling their respective tissues, searching
for cognate peptides from secondary exposure. Therefore, they
act as the first layer of defense in barrier tissues, inducing a
state of immune alert via quick cytokine production after Ag
re-encounter (50--53).

Trm can be found virtually everywhere in the organism.
This includes epithelial and nonepithelial sites (10, 30, 48, 54)
and secondary lymphoid organs (55). Trm widely vary in their
phenotype. Although, in epithelial sites, most Trm coexpress
CD69 and CD103, in other nonlymphoid tissues, CD1031 cells
are mostly absent, and many Trm do not express CD69 as well
(54). Liver Trm, for instance, are gated based on CXCR6 ex-
pression (56). These variations in the expression of �residency�

markers likely reflect the distinct microenvironments of each
organ.

The pathways needed for Trm establishment are still being
unveiled, and akin to their phenotype, they are likely distinct be-
tween tissues. For most epithelial sites, signaling through TGF-b
is necessary (11, 30, 57, 58). In contrast, Trm generation in the
liver is less dependent on this cytokine (49, 59). The need for
cognate Ag signaling inside the tissue is also organ-dependent.
Whereas in the skin, female reproductive tract, and gut their mi-
croenvironment, signals are sufficient to support Trm generation
(50, 60, 61), lung Trm require Ag inside the tissue (62, 63). The
long-term survival of Trm may also have organ-dependent re-
quirements, and this is perfectly exemplified by the role of IL-15.
After lymphocytic choriomeningitis virus (LCMV) infection,
whereas IL-15 promotes Trm survival in the salivary gland and
kidney, it is dispensable for their maintenance in the small intes-
tine, female reproductive tract, and pancreas (64). These find-
ings, in many cases, are the result of studies that used either
immunization Ag plus adjuvant or the model virus LCMV. In
both these models, only a transient inflammatory response oc-
curs, rather than what happens in response to pathogens of
medical relevance, such as ones directly infecting barrier tissues.

Submerging: effect of inflammatory environment on CD81

T cell function
CD81 T cell activation occurs in lymph nodes or spleen
through Ag presentation by dendritic cells (DCs). DCs can

TABLE I. Main characteristics of the distinct memory CD8+ T cell subsets

Memory Subset Main Characteristics Phenotypic Markers

Tcm Quiescence, stemness, quick reactivation
and proliferation upon secondary Ag,
recirculate between lymphoid organs and
blood

CD441, CD62L1, CCR71, TCF1hi, IL-7Ra1,
CD45RA- (humans)

Tscm Development occurs early after clonal
activation, phenotypic characteristics
resembling naive CD81 T cells, highly,
quiescent, stemness, recirculate between
lymphoid organs and blood

CD44lo, CD62L1, CD45RA1 (humans)

Tem Heightened capacity to produce cytokines
upon secondary Ag, recirculate between
lymphoid organs, blood and nonlymphoid
organs, shorter lived, decreased stemness

CD441, CD62L�, IL-7Ra1, KLRG1�

LLECs May arise from TEs, highest ability to
respond to secondary Ag, do not enter
nonlymphoid tissues (mostly confined to
blood and spleen red pulp)

CD441, CD62L�, IL-7Ra�, KLRG11, CX3CR1hi

Trm Do not recirculate (mostly found in
nonlymphoid organs, some in lymphoid
organs), quick mediators of secondary
immunity to local insults (e.g., barrier
infections), high expression of tissue
residency markers and transcriptional
signatures (e.g., Hobit/Blimp1), can be
defined (in mice) by lack of recirculation
upon parabiosis surgery or negative
intravascular labeling

CD441, CD62L�, intravascular Ab� (mice),
CD69/CD1031 (tissue dependent), KLF2lo,
Hobit/Blimp11 (tissue dependent)

340 CONTROL OF MEMORY CD8+ T CELLS BY INFLAMMATORY SIGNALS ImmunoHorizons

https://doi.org/10.4049/immunohorizons.2000102

 by guest on M
ay 22, 2022

http://w
w

w
.im

m
unohorizons.org/

D
ow

nloaded from
 

http://www.immunohorizons.org/


either be resident in these organs or migrate from barrier tis-
sues where they picked up Ag (65--68). The microanatomical
relocalization of DCs to T cell--rich areas is a fundamental step
of CD81 T cell activation (69--73). Past research has defined
that, in most cases, DCs recognize and capture cognate Ag in
the port of entry (systemic or local), migrate to proximal lym-
phoid organs toward T cell--rich areas, and present Ag (72, 73).
Whether inflammation affects this was not entirely clear, al-
though lymph node inflammation is important for the full acti-
vation of CD81 T cells (74). Moreover, inflammatory cytokines
are considered an additional signal to TCR and costimulation
for maximal CD81 T cell proliferation (75). A recent study has
investigated this, using sophisticated imaging tools. Surprising-
ly, in response to type I inflammation induced by TLR, lymph
node-resident DCs (rather than migratory ones) are crucial for
Ag delivery and initial activation of CD81 T cells. Resident DCs
relocate to T cell zones through CCR7 signaling, which allows
for quick Ag presentation. Further highlighting the importance
of inflammation, upon type I signals, monocytes infiltrate
lymph nodes via CCR2 through local blood vessels. Inside
lymph nodes, monocytes enter the T cell zone and secrete in-
flammatory cytokines to boost T cell activation (76), confirming
previous studies showing the ability of these cells to infiltrate
Ag-draining lymph nodes (77, 78). Importantly, these inflamma-
tory monocytes do not distribute equally inside the T cell zone.
This promotes distinct microenvironments within these lym-
phoid organs that are based on the intensity of inflammatory
signals. Consequently, effector CD81 T cells with distinct phe-
notypes can be found in these intranodal microenvironments,
showing that inflammatory signals not only help CD81 T cell
effector function but also direct their heterogeneity (76). This
divergent early CD81 T cell effector programming may also im-
pact the generation of CD81 T cell memory. This is suggested
by the clear distinction in TCF1, a promemory transcription
factor (79), observed between CD81 T cells in distinct microen-
vironments (76). The interplay between inflammatory signals,
TCR engagement, and CD81 T cell function is also highlighted
by studies showing that a concerted action of both pathways
shape how some early effector CD81 T cells undergo Bim-de-
pendent apoptosis (80). TCR signal strength and Ag availability,
conversely, can dictate how effector CD81 T cells develop in-
tracellular proinflammatory pathways (3).

The intensity and quality of inflammation dictate not
only the magnitude of CD81 T cell effector expansion but
also fine-tune their phenotype and impact their different
functional aspects (23, 81--83). This is important to promote
the elimination of infected cells, given inflammation-in-
duced chemokine and integrin ligand upregulation promote
effector CD81 T cell infiltration into nonlymphoid tissues
and pathogen killing (84--88). Consequently, the phenotype
and function of effector CD81 T cells vary depending on
the type of infection. For example, whereas in response to
vesicular stomatitis virus a greater proportion of effector
CD81 T cells differentiate into MP cells, in response to Lis-
teria, almost all effector CD81 T cells have a TE phenotype

(89). Because inflammation is dependent on pathogen load,
in many cases, the infection intensity is the defining feature
of the effector CD81 T cell response. A relevant example is
COVID-19, in which the presence of polyfunctional SARS-
CoV-2--specific CD81 T cells are associated with recovery
from disease (90, 91) and the magnitude of Ag-specific
CD81 T cells correlates with viral load (91). However, the
correlation between inflammatory molecules and the ex-
pression of effector molecules in SARS-CoV-2--specific
CD81 T cells was weak (91). This suggests a more complex
interplay between lung inflammation, Ag load, and effector
CD81 T cell responses during COVID-19.

Maximum depth: formation of memory CD81 T cells in the
presence of systemic or tissue inflammation
Beyond affecting their effector expansion, the inflammatory
context induced by various diseases can determine how and
whether CD81 T cell memory is formed. In addition, memory
CD81 T cells face distinct levels of inflammation in different
tissues that also affects their long-term survival and secondary
function.

How inflammation shapes memory CD81 T cell generation.
The effector-to-memory transition typically occurs during the
peak of effector response, when MP cells arise (22). Even in
the context of LCMV infection, the presence of proinflamma-
tory cytokines (namely, prolonged IL-2, type I IFN, and IL-12
stimulation) divert effector CD81 T cells away from the mem-
ory phenotype (23, 92, 93). The sensing of these cytokines,
however, cannot be interpreted separately from cognate Ag.
Indeed, reduced TCR signal strength resulted in increased MP
accumulation even in the presence of inflammatory cytokines
(3). The effect of inflammation on MP cells may also be con-
text-dependent. Different from acute viral infection, immuni-
zation with inflammation-inducing adjuvants (e.g., CpG) do
not affect the numbers of MPs, rather they promote an in-
crease of TE cells (94).

In contrast, another signal typically associated with tissue
inflammation, eATP, was shown by us to promote the MP phe-
notype and transition to memory in CD81 T cells through the
P2RX7 receptor (95). The role of eATP sensing for CD81 T
cells is likely complex and may involve autocrine release of
eATP by CD81 T cells via the hemichannel Pannexin-1 (95,
96). In this case, inflammation-derived eATP may not be rele-
vant for memory generation, at least in the presence of less ag-
gressive pathogens. Whether this is true in the presence of
infections that induce enhanced or prolonged tissue inflamma-
tion, such as influenza in the lung or Yersinia in the gut, re-
mains to be defined. In addition, despite preferential
expression of P2RX7 in MP cells, many early effector CD81 T
cells also express P2RX7 (59, 95), and it is reasonable to assume
that not all of them will become MP cells. What is the effect of
eATP sensing on effector CD81 T cells that do not become MP
cells? Like MPs, are these cells able to release eATP via
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Pannexin-1? These will be important questions to be answered
and may help us understand whether CD81 T cells rely on
eATP for memory generation in the context of excessive in-
flammation-derived eATP.

Another inflammatory signal likely sensed by forming mem-
ory CD81 T cells is DNA from viral origin or from host/CD81

T cells themselves. Recognition of DNA and engagement of the
cGAS--STING pathway can induce cell death in certain cell
types (97). Contrary to this, CD81 T cell cGAS--STING activa-
tion promotes the generation of Tcm phenotype CD81 T cells
in humans (98). Cytosolic DNA can accumulate in effector
CD81 T cells, and simultaneous engagement of DNA repair
pathways is likely important for memory CD81 T cell genera-
tion. Indeed, a DNA repair gene signature is associated with
memory CD81 T cell generation (99). This may suggest that in-
creased DNA repair helps curb the intensity of the cGAS--ST-
ING activation to prevent undesirable effects (i.e., cell death).

Many pathogens induce a localized immune response. Pro-
tective immunity in these cases relies on Trm, and tissue in-
flammation context influences how and whether Trm are
formed. In the small intestine, two major inflammation-modu-
lating factors affect Trm generation: the local microbiota and
the presence of regulatory T cells (Tregs). The gut microbiota
contains specific bacteria that can promote the accumulation of
intestine Trm (100). Moreover, Trm specific for microbiota Ags
found in the gut can promote protection against certain oral in-
fections and tumors (101). In different circumstances, however,
microbiota may diminish Trm accumulation and responses. For
example, transient elimination of microbiota favors CD81 Trm
responses to Listeria-encoded Ags (102).

Although peripheral Treg expansion may be deleterious for
gut Trm accumulation in determined contexts (103), in re-
sponse to infections inducing type I inflammation, expansion of
type 1 Tregs is important for the induction of CD81 Trm by in-
creasing the availability of bioactive TGF-b in the small intes-
tine microenvironment (104). Treg depletion also leads to
reduced Trm numbers in the CNS upon viral infection (105).
The apparent lesson from these studies is that tissue inflamma-
tion is, in many cases, important for Trm development, but in
controlled levels; in a somewhat similar manner as for circulat-
ing memory CD81 T cells, excessive type 1 inflammation di-
verts tissue-seeding CD81 T cells to a terminal phenotype.
Agreeing with this notion, disproportionate inflammation limits
the acquisition of memory traits and favors terminal exhaustion
in CD81 T cells during chronic LCMV infection (106). More-
over, CD81 T cell diversion toward terminal exhaustion relies
on expression of inflammation-associated transcriptional fea-
tures, including T-bet and Tox upregulation (107).

Excessive inflammation may be deleterious for the gen-
eration of memory CD81 T cells. Response to SARS-CoV-2,
however, may induce a more complex relation between in-
flammation and CD81 T cell memory. Many studies suggest
that CD41 and CD81 T cell memory, elicited by past expo-
sure or immunization, is crucial to promote long-term pro-
tection against the virus (90, 108--111). Aside from a

potential contribution of pre-existing memory CD81 T cells
specific for cross-reactive coronavirus Ags (112), much of
the CD81 T cell response to SARS-CoV-2 is mediated by
newly activated clones (91). In convalescent patients, SARS-
CoV-2--specific CD81 T cells are enriched for the Tscm
pool. In high-prevalence clones, these cells are skewed to-
ward a Temra (i.e., effector memory cells re-expressing
CD45RA) and Tem phenotypes, with a low prevalence in
quiescent cells. In airway samples from patients, CD81 T
cells with a Trm phenotype can be found, and higher fre-
quency of these cells correlated with younger age and sur-
vival (113). Future studies focusing on how memory CD81 T
cells form and function in both circulation and tissues of
SARS-CoV-2--infected hosts will be needed.

Role of inflammation in memory CD81 T cell maintenance and
reactivation. Inflammatory signals can affect not only the gen-
eration of memory CD81 T cells but also their maintenance. In
many circumstances, bystander infections or insults lead to in-
creased secretion of inflammatory mediators that can affect ex-
isting memory CD81 T cells. A straight-forward example is
sepsis, which induces preferential attrition of memory CD81 T
cells (114). The effect of bystander inflammation is usually
more prevalent in barrier tissues, which are often the sites of
new infections. An example is the lung, where epithelial cells
infected with influenza increase their production and secretion
of TSLP. TSLP, despite positively modulating naive CD81 T
cell survival in vitro, negatively impacts existing lung CD81

Trm (115). TSLP directly represses the expression of the tran-
scription factors Runx2 and Egr2, both important for antiviral
CD81 T cell homeostasis (116, 117). TSLP activity also dimin-
ished the expression of Pannexin-1, which can influence CD81

T cell mitochondrial homeostasis in the context of IL-15 (95)
and may influence memory CD81 T cell maintenance (96).
Pannexin-1, as explained above, mediates the export of eATP in
CD81 T cells. We have found the eATP signaling through
P2RX7 promotes the long-term maintenance of established
Trm by using mouse LCMV (59), which does not, however, in-
duce relevant lung Trm populations (63). Future studies will be
necessary to assess whether P2RX7 (and Pannexin-1) are re-
quired for the maintenance of lung Trm populations. If this is
true, it will be important to assess whether TSLP also influen-
ces eATP sensing pathways in lung Trm. Mirroring circulating
memory CD81 T cells (118), lung Trm maintenance relies on
mitochondrial fitness, more specifically on the expression of
the transcription factor Bhlhe40 (10). The lung, like other mu-
cosal tissues and tumors, displays limited nutrients (e.g., glu-
cose) and increased baseline inflammation (119, 120). The
induction of stress pathways in lung Trm is likely important for
the tissue-specific function of Bhlhe40, which is a stress-re-
sponsive protein.

Conversely, memory CD81 T cells can be activated in re-
sponse to bystander inflammation in certain situations, inducing
an effector T cell--like phenotype, including expression of gran-
zyme B (121, 122) and IFN-g (123, 124). These cells, upon
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bystander activation, can eliminate cells infected with noncog-
nate virus and promote quick pathogen control but may pro-
mote tissue damage in the presence of a nonrelated chronic
infection. The ability of memory CD81 T cells to engage by-
stander inflammatory signals increases with additional Ag stim-
ulations but decreases with time after the last Ag encounter
(125). This parallels the acquisition of an effector-like pheno-
type in secondary and tertiary memory CD81 T cells (126) as
well as in mice exposed to pathogen normalization via cohous-
ing with pet store counterparts (127). This contrasts with the

progressive enrichment of quiescent Tcm in the absence of se-
rial Ag stimulation. Interestingly, memory CD81 T cell bystand-
er activation does not happen only in response to systemic
inflammation but also occurs in a localized way in response to
immunizations (128). The presence of bystander inflammation
(e.g., type I IFN) can also promote memory CD81 T cell prolif-
eration (129), although this seems limited if compared with Ag-
driven proliferation (129). Localized bystander inflammation,
moreover, can promote the accumulation of Trm quickly after
inflammation onset (130). This suggests that inflammation can
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FIGURE 1. How inflammation can affect memory CD8+ T cells.

This hypothetical scheme highlights the common relation between inflammatory signals and memory CD81 T cells. Independent of location or nature of mem-

ory CD81 T cells, low or no inflammation mostly hinders memory CD81 T cell generation (including the input of effector cells needed for effector-to-memory

conversion) and survival. Conversely, excessive inflammation usually diverts activated CD81 T cells toward terminal-like phenotypes, consequently leading to

increased population death; this is also true for existing memory CD81 T cells, in which too high levels of proinflammatory signals lead to both a conversion

to a effector-like phenotype and increased attrition. There is a likely sweet spot, where enough type 1 inflammatory signals promote effective priming of CD81

T cells (together with TCR and costimulation), appropriate MP generation (both in circulation and in tissues), and efficient maintenance and reactivation of

memory CD81 T cells, either in the presence or not of secondary Ag. Manipulations of local and/or systemic inflammation should ideally shape the inflammato-

ry environment to reach this hypothetical sweet spot, which may vary from tissue to tissue and from infection to infection. The figure was created with

Biorender.com.
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alter the intraorgan trafficking of memory CD81 T cells. Also,
cytokine-mediated recruitment of bystander circulating effector
and memory CD81 T cells is a hallmark of Ag-reactivated Trm
(51--53). This provides further evidence that bystander inflam-
mation promotes differential migration of memory CD81 T
cells. Finally, inflammatory signals can also increase memory
CD81 T cell functional avidity (131). Overall, memory CD81 T
cells are equipped with sensing pathways that allow the recog-
nition of bystander signals, allowing their response modulation.

The reactivation of memory CD81 T cells may also be fa-
vored by inflammation associated with their cognate Ag. For
example, the accumulation of acetate at sites of reinfection pro-
motes glutaminolysis and cellular respiration, promoting en-
hanced memory CD81 T cell function and subsequent
pathogen clearance (132). A positive role of inflammation can
also be found for gut Trm in response to Yersinia infection, in
which prolonged production of IL-12 and type I IFN within
Trm-rich immune clusters promote long-term Trm survival
(133). These clusters are found in many nonlymphoid tissues,
such as the brain (134), female reproductive tract (135), and
lung (47). Therefore, a more detailed assessment is needed of
whether the controlled production of inflammatory mediators
in these sites can also favor Trm survival. These data once again
illustrate a possible scenario in which controlled inflammation
may be needed for the optimal survival and function of Trm.

CONCLUSIONS

Our field has made outstanding advancements to define how
memory CD81 T cells form, maintain, and act in response to
multiple inflammatory environments. Despite these break-
throughs, many knowledge gaps remain, most of them dis-
cussed throughout this review. For instance, we now know that
type 1 inflammatory signals can influence the quality and spatial
distribution of CD81 T cell priming, influencing their effector
function and subsequent memory fate (76). However, not much
is known about how type 2 stimuli influence CD81 T cell
memory. This may be particularly important for Trm, which
can express type 2 cytokine receptors (136). Still, about the role
of type 1 inflammation for CD81 T cell responses, how does
this pan out in the context of systemic inflammation, which in-
duces a strong inflammatory monocyte response? Answering
this question, and others, may give us a complete understand-
ing of how different inflammatory responses control the CD81

T cell memory fate.
Nevertheless, a common theme can be depicted about how

inflammation affect memory CD81 T cells. Regardless of the
site or infection model for memory CD81 T cell generation,
maintenance, and secondary function, the presence of a con-
trolled level of inflammatory signals may be ideal (Fig. 1). If in-
flammation signals are absent or too low, they often result is a
decay in memory generation and impaired reactivation. At the
other end, exaggerated inflammatory signals typically divert
CD81 T cells toward terminal differentiation and death at an

effector phase and impaired memory CD81 T cell maintenance.
Given that 1) there seems to be a common denominator for
how inflammation affects all memory CD81 T cell subsets and
2) inflammation often induces changes in the nature of existing
memory CD81 T cells (128), future studies aiming to under-
stand how inflammation affects CD81 T cell memory may ben-
efit from limiting the subdivision in memory subsets.
Obviously, the use of subsets to define memory CD81 T cells is
valuable because it is hard to understand general tendencies
without placing these cells into defined groups. However, if we
are considering multiple inflammatory backgrounds, subsets
may not capture the complexity of the millions of clones gener-
ating a role for long-lived memory CD81 T cells. This is espe-
cially true considering that memory cells resultant from one
clone are not homogeneous, even when placed in the same
subset.
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