Recent Advances in the Discovery and Delivery of TLR7/8 Agonists as Vaccine Adjuvants

David J. Dowling

ImmunoHorizons 2018, 2 (6) 185-197
doi: https://doi.org/10.4049/immunohorizons.1700063
http://www.immunohorizons.org/content/2/6/185

This information is current as of August 6, 2021.

References This article cites 100 articles, 24 of which you can access for free at:
http://www.immunohorizons.org/content/2/6/185.full#ref-list-1

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://www.immunohorizons.org/alerts
Recent Advances in the Discovery and Delivery of TLR7/8 Agonists as Vaccine Adjuvants

David J. Dowling
Division of Infectious Diseases, Department of Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115

ABSTRACT
The need for new adjuvants is absolutely cardinal to the development of new vaccines and to further optimizing current immunization approaches. However, only a few classes of adjuvants are presently incorporated in vaccines approved for human use. Recent advances in the discovery and delivery of TLR agonists as vaccine adjuvants have begun to open up a new toolbox for vaccinologists. At the forefront of this movement is the use of synthetic small molecule TLR7/8 agonist-based adjuvants. In this review, we emphasize the importance of vaccine formulation science in driving recent developments in TLR7/8 adjuvanticity, summarize some of the most current and notable studies in this field, and discuss desirable attributes of next generation TLR7/8 adjuvants for use in enhancing vaccine responses in vulnerable populations, such as the very young. Finally, we explore advances that may further edge the development of TLR7/8 adjuvant–based vaccine formulations toward clinical human evaluation.

INTRODUCTION
Over the past 200 years, vaccination has been the most effective medical intervention to reduce death and morbidity caused by infectious diseases, especially in childhood (1). Vaccination exploits the generation of immunological memory by the mammalian immune system following exposure to Ag (components of a pathogen), providing the immunized with the ability to respond rapidly to a subsequent encounter with the originating Ag or its related pathogenic organism without undergoing the pathological effects of natural infection (1). Vaccination therefore imprints the immune system with the experience of live pathogen exposure, resulting in the generation of strong humoral immune responses by Ag-specific memory B, which is mediated by various subsets of specialized Ag-specific CD4⁺ T cells (2). However, the efficacy of immunization varies dramatically, with the composition of vaccine, be it live attenuated, inactivated, subunit, monovalent/multivalent, protein-, or nonprotein (e.g., polysaccharides)-based, all important factors (3).

Adjuvantation is a key tool to enhance vaccine-induced immunity (3). Adjuvants can enhance, prolong, and modulate immune responses to vaccine Ags to maximize protective immunity (3, 4) and may potentially enable more effective immunization in the very young and the elderly (5). Fittingly, the word adjuvant is derived from the Latin advare, meaning “to help.” In the early stages of vaccinology, adjuvants were often not required, as the majority of vaccines employed live attenuated or killed organism, which themselves contained inherent adjuvant activity needed to instruct enhanced immunization (i.e., self-adjuvanted). Adjuvants currently employed in human vaccines licensed for use in Europe and/or the United States include aluminum salts (alum) (of which there are three classes), oil-in-water emulsions...
TLR7/8 AGONISTS AS VACCINE ADJUVANTS

TLR7, TLR8, and TLR9 are expressed on the surface of endosomes and belong to the same subfamily of leukocyte PRRs. Human TLR7 and TLR8 are phylogenetically similar (16, 17) and were first described in 2000 (18). Together, TLR7 and TLR8 mediate recognition of purine-rich ssRNA to elicit an immune response to pathogens that are recognized in the endosome. Naturally derived viral uridine-rich ssRNAs include those of influenza and HIV (19). TLR7 (20) and TLR8 are also implicated in the recognition of bacterial RNA (16, 21). TLR7 is primarily expressed in human plasmacytoid DCs (pDCs) and, to some extent, in T cells, B cells, eosinophils, neutrophils, and monocytes/macrophages. TLR8 is expressed in monocytes, macrophages, T cells, and most predominantly in myeloid DCs (16, 17). TLR7 and TLR8 both signal predominantly in myeloid DCs (16, 17).

Upon cellular stimulation (e.g., with a small molecule) or infection, TLR7 and 8 are released from the endoplasmic reticulum (ER) to the endosome by leucine-rich repeat (LRR)–containing protein 59 (LRRC59), which promotes the ER resident membrane protein uncoordinated 93 homolog B1 (Caenorhabditis elegans) (UNC93B1) (24) to mediate packaging of TLR7 vesicles to exit the ER and translocate to the Golgi. Although less is known about TLR8, once TLR7 reaches the endosome, acidification of the endosome allows TLR7 and 8 to be released from the ER and translocated to the Golgi for further processing.

Adjuvant activity via TLR7 and TLR8 agonists has been demonstrated in a variety of preclinical studies. TLR7 agonists have been shown to enhance immune responses to a variety of pathogens, including viruses, bacteria, and parasites. TLR7 agonists have been shown to enhance the immune response to influenza virus (25), mouse hepatitis virus (MHV) (26), and murine corona virus (27). TLR8 agonists have been shown to enhance the immune response to mycobacteria (28), vaccinia virus (29), and influenza virus (30). TLR7 and TLR8 agonists have also been shown to enhance the immune response to tumor antigens (31). TLR7 and TLR8 agonists have been shown to enhance the immune response to tumor antigens (31). TLR7 and TLR8 agonists have also been shown to enhance the immune response to tumor antigens (31).
endosome leads to proteolytic cleavage of TLR7 (25). This cleavage event generates a functionally competent receptor essential for TLR7 signaling in response to ligand binding. TLR8 is documented to trigger production of proinflammatory cytokines including TNF, IL-6, and IL-12p70 from human conventional DCs (Fig. 1). Importantly, IL-12p70 is a key cytokine in the enhancement of Th1-polarized immune responses and promotes cytotoxic T cell proliferation, survival, and the generation of immunological memory (26).

Although predominantly studied in APCs, the expression of endosomal TLRs by adaptive lymphocytes has also been described by several reports (27) and may be in direct opposition to the receptors’ roles in innate immune cells. Specifically, TLR7- and 8-induced augmentation of lymphocyte activation and function is closely linked to TLR expression in respective T cell subsets (28).

TLR8 is exclusively expressed in human regulatory T cells, and exposure to TLR8 agonists triggers the TLR8–MyD88–IRAK4 signaling pathway, which mediates the reversal of the suppressive function of regulatory T cells (29). Correspondingly, TLR7 signaling inhibits proliferation and cytokine secretion by CD4+ T cells that mediates an anergic/nonresponsiveness phenotype during HIV infection (30). Although naïve human B cells express low levels of TLRs, similar to pDCs, TLR9 and TLR7 are preferentially present. Activated and memory human B cells express a broader range of TLRs that, although especially prominent for TLR9, also include TLR1, TLR6, TLR10, and TLR7. Interestingly, B cell–intrinsic TLR7 signaling may play a role in optimal B cell responses during chronic infection (31), which could be leveraged to activate memory B cells and magnify humoral immune responses during immunization via coengaging of the BCR and TLR7 with hapten-protein Ag and adjuvants, respectively (32).

Small molecule agonist families have been identified which activate TLR2, TLR4, TLR7, and TLR8. In relation to TLR7 and TLR8, synthetic small molecule TLR7/8 agonist–based adjuvants include synthetic chemical agonists such as imidazoquinolines (IMQs) (33–35) and benzazepines (36). IMQs, including imiquimod and resiquimod (R848), are by far the most studied to date. IMQs are small (usually <400 Da) compounds that bear structural homology to the purine adenosine and, like naturally derived agonists, activate mammalian leukocytes via TLR7 and/or TLR8, leading to MyD88-dependent NF-κB activation (37, 38). Whereas TLR7 agonist imiquimod activates significant antiviral and modest Th1-polarizing responses from pDCs (and monocytes), including IFN-α production, agonists with more specific TLR8 activity such as the small synthetic thiazooquinoline CL075 (also known as 3M–002) activate monocytes and myeloid DCs to induce robust cytokine production that drives adaptive immunity (39) (Fig. 1).

This suggests that IMQs may hold better adjuvant potential in humans than CpG ODN, as TLR7 and TLR8 are broadly expressed on DCs and other APCs in contrast to TLR9, which is primarily expressed on pDCs. Of note, IMQs engage the TLR7/8 pathway in a species-specific fashion. Human, pig, and nonhuman primate (NHP) TLR8 are activated by the same agonists (40), but murine TLR8 is divergent from human TLR in the expression of LRRs (NHP) TLR8 are activated by the same agonists (40), but murine TLR8 are activated by the same agonists (40), but murine TLR8 are activated by the same agonists (40), but murine TLR8 are activated by the same agonists (40), but murine TLR8 are activated by the same agonists (40), but murine TLR8.

For example, humans, but not mice, detect ssRNA through TLR8 expressed on myeloid DCs (23). Such issues warrant caution in translating these findings on TLR7/8-acting molecules to potential human targeted vaccine strategies.

FUNCTIONS PATHWAYS RECOGNITION

RECOGNITION

ENDOSOME

Small molecules

(e.g., imidazoquinolines)

TLR7

TLR8

Plasmacytoid DCs

Monocytes

Myeloid DCs

NF-κB

IRF7

Type I IFN genes

Proinflammatory cytokine and chemokine genes

FIGURE 1. Immune responses induced by TLR TLR7/8 ligands in primary human DC subsets.

The natural ligand of TLR7 and TLR8 is ssRNA. Small molecule IMQ compounds such as imiquimod and resiquimod (R848) also activate both receptors and are the subject of adjuvantation research. TLR7 and TLR8 agonists differ in their DC subset selectivity and IFN/cytokine/chemokine induction profile. TLR7-specific agonists activate pDCs and induce mainly IRF7–driven signaling, IFN-α, and IFN–regulated cytokines. TLR8–specific agonists activate monocytes and myeloid DCs, leading primarily to the NF-κB activation and production of proinflammatory cytokines and chemokines, such as IL-12p70. The ability of TLR7 agonists to activate DCs and thus elicit Th1-like responses (IFN–γ–producing CD4+ cells and IgG2-producing B cells) can be exploited to enhance the efficacy of vaccination. IRAK, IL-1R–associated kinase.
delivery of TLR7/8 agonists as vaccine adjuvants. Typically, the unformulated synthetic small molecule IMQs TLR7/8 ligand adjuvants do not work well in comparison with their larger m.w. counterparts such as alum because they are prone to diffuse away from the injection site, which can also result in systemic toxicity (17). Most notably, R848 has a poor tolerability profile when tested in humans, and common systemic side effects include injection site reactogenicity and flu-like symptoms (fever, headache, and malaise) that correlate with systemic immune activation such as high concentrations of numerous cytokines in the blood (42, 43).

Therefore, improving IMQ-based vaccine adjuvant properties required further formulation techniques to minimize adjuvant reactogenicity and localize the molecule in the body after administration.

The first step in this trend came indirectly through the manufacture of the synthetic small molecule imiquimod, which is approved in a topical 5% cream formulation (under the trade name Aldara [imiquimod cream]) for treatment of human papillomavirus-mediated external genital warts, actinic keratosis, and superficial basal cell carcinoma (17). Imiquimod is a TLR7-selective analog of R848 which is 100-fold less potent. Like all IMQs, owing to imiquimod’s insolubility in aqueous solutions near physiological pH, formulation success was achieved by use of fatty acids as the preferred solvent for topical imiquimod formulations (44). When applied as a topical skin adjuvant, imiquimod enhanced intradermal influenza vaccine responses (8, 45, 46). However, topical IMQs (such as imiquimod and resiquimod [R848]) have unfavorable pharmacokinetic properties that induce strong local and systemic inflammatory reactions and are poorly tolerated (42, 43); they are likely not required for their vaccine efficacy and reduce their effectiveness for inducing adaptive immunity.

Secondly, the vast majority of licensed vaccines are administered

FIGURE 2. Innovations in formulation and delivery systems for TLR7/8 agonists.

Small molecule TLR 7/8 agonists have demonstrated great potential as vaccine adjuvants because they directly activate APCs and can enhance both humoral and cellular immune responses, especially Th1 responses. The most promising innovations in formulation and use of delivery systems for TLR7/8 agonists include 1) lipidation approaches, as best demonstrated by 3M-052, a TLR7/8-activating IMQ bearing a C18 lipid moiety and designed for slow dissemination from the site of injection, 2) encapsulating nanoparticles (e.g., polymersomes), 3) adsorption to alum adjuvants (TLR7 agonists are functionalized with polyethylene glycol linkers), in which terminal phosphate groups allow for ligand exchange of hydroxyl and/or phosphate groups on the surface of aluminum hydroxide [Al(OH)₃] or phosphate (AlPO₄), 4) conjugation to polymers and/or protein Ags, and 5) additive/synergistic admixture combinations with other adjuvants such as TLR4 adjuvants.
admixed with Ag via a standardized i.m. route. Therefore, new formulation concepts and properties of delivery were needed to better retain the small molecule TLR7/8 adjuvant at the injection site to improve their pharmacokinetics in ways that positively influenced their activity for use in prophylactic vaccines. Encouragingly, some promising innovations in formulation and use of delivery systems for TLR7/8 agonists have recently been achieved, including 1) lipidation approaches, 2) encapsulating nanoparticles, 3) adsorption to alum adjuvants, and 4) conjugation to polymers and/or protein Ags (Fig. 2).

Lipidation

First, the lipidation approach is best demonstrated by 3M-052, a locally acting lipidated IMQ TLR7/8 adjuvant bearing a fatty acid tail (C18 lipid moiety). The physical–chemical properties of 3M-052 ensure it stays at the site of vaccination, thus postdose and inducing significant serum TNF, pharmacokinetic and pharmacodynamic studies demonstrate that 3M-052 is not detected in serum and induces only a minimum serum cytokine signature (47, 48). 3M-052 has also been evaluated in numerous vaccine models (Table I). In contrast with R848, which is rapidly dissipated from the injection site, entering the blood within 5 min postdose and inducing significant serum TNF, pharmacokinetic and pharmacodynamic studies demonstrate that 3M-052 is not detected in serum and induces only a minimum serum cytokine signature (47, 48). 3M-052 has also been evaluated in numerous vaccine models (Table I). As compared with R848, a liposome formulations of 3M-052 admixed with hemagglutinin (HA) could enhance Th1 immunity without induction of systemic cytokines (47). Interestingly, 3M-052 could also drive robust Th1-cytokine production by human newborn leukocytes in vitro, both alone and in synergy with the alum-adjuvanted pneumococcal conjugate vaccine (PCV)13 (Prevnar 13) (48). When admixed with PCV13 and administered i.m. to infant neonatal rhesus macaques, 3M-052 dramatically enhanced generation of Th1 CRP-iNOS-specific neonatal CD4+ cells and activation of newborn and infant Streptococcus pneumoniae polysaccharide-specific B cells as well as serotype-specific Ab titers and opsonophagocytic killing (48). The key to 3M-052 adjuvanticity lies in its ability to enhance and prolong IFN-γ production by CD4+ T cells to vaccine Ags (49), driving germinal center reactions and Ab subclass production associated with the development of IFN-γ–driven type 1 immunity that are endowed with higher effector functions in vivo (e.g., IgG2a/c in mice and IgG3 in human), enhancing protection to live pathogen challenge (50). Overall, 3M-052 is an excellent example of a small molecule TLR7/8 adjuvant designed for slow dissemination from the site of injection, which can be admixed

with various Ags already employed in conventional vaccine formulations while also demonstrating an improvement in dose sparing over the prototypical IMQs like R848 (47, 48).

Encapsulation nanoparticles

Advances in the field of immunoengineering, which is developing alongside vaccinology, have begun to greatly influence vaccine formulation design (51, 52). Historically, the first steps into vaccine formulation design were driven by the need to stabilize Ags (i.e., first-generation vaccines often employed Ag adsorption onto alum). Second-generation efforts employed more characterized material, such as the biodegradable synthetic polymer, poly(D,L-lactic-co-glycolic acid) (PLGA), which is a widely investigated nanoparticle adjuvant for controlled and effective delivery of vaccine Ags, including synthetic peptides. These are usually produced as solid block particles ranging from 50 to 500 nm in size, with Ags entrapped or adsorbed on the surface of the particles (53). Immunization with an R848-encapsulating PLGA nanoparticle attenuates the production of systemic inflammatory cytokines induced by free R848 while enhancing murine humoral immunogenicity to the model Ag OVA (54) (Table II). In the context of an NHP simian immunodeficiency virus model, and as compared with alum alone–adjuvanted vaccine Ags, coencapsulation of a TLR7/8 IMQ with MPLA induced a robust innate response as well as Ag-specific humoral, plasmablast, and long-lived bone marrow resident plasma cells (55). Furthermore, the combination of MPLA and the TLR7-selective IMQ R837 in PLGA nanoparticles mediated synergistic enhancement of Ab responses against influenza A virus subtype H5N1 (H5N1)-derived HA, which was mechanistically contingent on the direct activation of B cells and DCs through TLRs as well as on T cell help (56). Similarly, admixture of imiquimod and the synthetic TLR4 adjuvant glucopyranosyl lipid A (GLA) induced synergistic cytokine secretion from human whole blood in vitro, and combined liposomal encapsulating formulation enhanced innate and adaptive Th1 responses in vivo to recombinant Plasmodium proteins (57).

TABLE I. Studies investigating lipidated TLR7/8 agonist formulation and adjuvanticity

<table>
<thead>
<tr>
<th>Adjuvant</th>
<th>Formulation</th>
<th>Model</th>
<th>Disease Model</th>
<th>Immune Response Activated</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M-052</td>
<td>Oil-in-water emulsion (SE), alum admixed</td>
<td>Neonatal NHP rhesus macaque</td>
<td>Pneumococcus</td>
<td>Overcoming hyporesponsiveness to neonatal PCV/single birth shot protection</td>
<td>(48)</td>
</tr>
<tr>
<td>3M-052</td>
<td>3M-052 adsorbed to alum via helper lipid</td>
<td>Mouse</td>
<td>Tuberculosis and HIV</td>
<td>Enhanced Ab and Th1-type cellular immune responses to vaccine Ags Protection from lethal H5N1 homologous virus challenge</td>
<td>(49)</td>
</tr>
<tr>
<td>3M-052</td>
<td>Liposome/SE</td>
<td>Mice and ferrets</td>
<td>Influenza</td>
<td></td>
<td>(50)</td>
</tr>
</tbody>
</table>

HSN1, influenza A virus subtype H5N1; SE, stable emulsion.
system, which are also significantly more stable than liposomes (52). Polymersomes can be engineered for bioresponsive intracellular payload delivery (52), such as lysis in response to pH changes, a highly advantageous method for the specific targeting of endosomal receptors such as TLR7 and TLR8. Furthermore, such formulations can be made to mimic the immunomodulating effects of the live attenuated vaccine such as BCG. When coloaded with the *M. tuberculosis* Ag 85B peptide 25, TLR8 agonist-containing polymersome nanoparticles are comparable to BCG in inducing Ag-specific immune responses in hTLR8-expressing humanized neonatal mice in vivo (59).

Adsorption to alum

In a third approach, benzophenanthridine (BZN) TLR7 agonists have been chemically modified with phosphonates to allow adsorption onto alum hydroxide (60, 61) (Fig. 2). The adsorption of a TLR7/8 adjuvant to alum to create small molecule immune potentiators (SMIPs) shares some similar advantages to lipidation and encapsulation, such as 1) it exploits the inherent adjuvanticity of alum, 2) including its ability to simultaneously codeliver Ag and adjuvant, while also 3) ensuring the small molecule adjuvants stays at the site of vaccination, thereby limiting the biodistribution of the alum-adsorbed BZN TLR7 adjuvant. Often using R848 or alum as comparators, the adjuvanticity of a number of BZN-based SMIP compounds has been evaluated in vivo with promising results (Table III). SMIPs have demonstrated significantly enhanced adjuvanticity in the context of several licensed vaccine classes, including formulation with recombinant group B meningococcus (MenB) proteins alone or with the full four-component alum-adjuvanted MenB vaccine formulation (trade name: Bexsero) (60), the glycoconjugate CRM197–group C meningococcus (MenC) vaccine (trade name: Menjugate) (62), and a tetanus, diphtheria,

<table>
<thead>
<tr>
<th>Adjuvant</th>
<th>Formulation</th>
<th>Model</th>
<th>Disease Model</th>
<th>Immune Response Activated</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>R848</td>
<td>PLGA encapsulation</td>
<td>Mice</td>
<td>OVA</td>
<td>Nanoparticle encapsulation of TLR7/8 agonist R848 attenuates the production of systemic inflammatory cytokines while enhancing humoral immunogenicity</td>
<td>(54)</td>
</tr>
<tr>
<td>TLR7/8 IMQ</td>
<td>PLGA encapsulation with TLR4 agonist MPLA</td>
<td>NHP rhesus macaque</td>
<td>SIV</td>
<td>Induction of robust innate, Ag-specific humoral, plasmablast, long-lived bone marrow resident plasma cells compared with alum alone–adjuvanted vaccines</td>
<td>(55)</td>
</tr>
<tr>
<td>TLR7/8 IMQ</td>
<td>PLGA encapsulation with TLR4 agonist MPLA</td>
<td>Mice and NHP rhesus macaque</td>
<td>Influenza</td>
<td>Induction of robust innate, Ag-specific humoral responses as compared with single TLR alone–adjuvanted vaccines. Immunization protected mice against lethal avian and swine influenza virus and induced robust immunity against pandemic influenza A virus subtype H1N1 (H1N1). A/California/04/09 strain in rhesus macaques.</td>
<td>(56)</td>
</tr>
<tr>
<td>TLR7 IMQ (imiquimod)</td>
<td>Anionic liposomal (phospholipids, cholesterol) encapsulation with TLR4 agonist GLA</td>
<td>Mice</td>
<td>Malaria</td>
<td>Induction of robust innate, Ag-specific humoral, plasmablast, long-lived bone marrow resident plasma cells compared with alum alone–adjuvanted vaccines</td>
<td>(57)</td>
</tr>
<tr>
<td>IMQ CL075 (TLR8/7)</td>
<td>Poly(ethylene glycol)-bl-poly (propylene sulfide)–Ag85 encapsulation</td>
<td>Humanized TLR8 neonatal mice</td>
<td>Tuberculosis and HIV</td>
<td>Induction of adult-like innate maturation of human neonatal DCs in vitro. Single neonatal immunization induced noninferior Ag85-specific T cell responses as compared with live attenuated BCG vaccination in vivo.</td>
<td>(59)</td>
</tr>
</tbody>
</table>
and acellular pertussis (whooping cough) vaccine (63). Most interestingly, SMIP TLR7 adjuvantation approaches have opened up an opportunity to shape responses to diseases not yet preventable by vaccination (64), including *Staphylococcus aureus* and HIV. In the case of the former, SMIP TLR7 adjuvantation significantly increased Ab titers, a Th1 skewed immune response, reduction of abscess formation, and dermonecrosis in an *S. aureus* rabbit model in vivo (65). Using an NHP model, the latter study demonstrates that TLR7 adjuvantation can induce a high-magnitude HIV Env-specific CD4+ T cell response in the vaccine-draining lymph nodes (LNs), which directly correlated with increased Tfh cell differentiation and germinal center formation (66). Tfh cells are pivotal regulators of the germinal center response and humoral immunity (2). Alum/TLR7 combinations may also, following vaccination, facilitate the expansion and sustain the generation of the memory B cell compartment within the draining LN by increasing recruitment of naive B cells (67).

Conjugation

Fourth, TLR ligands covalently coupled to vaccine Ags may have several benefits over nonconjugated Ags (68). For example, the chemical conjugation of R848 with protein Ags has shown that synchronous delivery of Ag and TLR7/8 adjuvant may be a highly efficient approach for optimizing T cell priming toward Th1 responses (40, 69) (Fig. 2). Promisingly, immunization of mice with a SMIP TLR7 agonist conjugated to the pneumococcal RrgB Ag could extend animal survival after lethal challenge with live *S. pneumoniae*, with a 10-fold Ag dose-sparing effect (70) (Table IV). Additionally, the coupling of an Ag and an IMQ-based TLR7/8 agonist together with spontaneously nanoparticle-forming thermoresponsive polymers could also elicit vaccine-induced broad-based neutralizing Abs and CD4/8 T cell responses to immunogenic proteins, including those from HIV (71) and respiratory syncytial virus (RSV) (72). Chemical conjugation to other adjuvants is also effective, as with the IMQ-based TLR7 agonist CL307, which, when linked to a synthetic lipopeptide TLR2 agonist, enhanced maturation of human DCs in vitro and increased humoral responses against HIV-1 p24 in BALB/c mice in vivo (73). Perhaps the most interesting form of TLR7/8 adjuvant conjugation involves the use of an inactivated influenza virus (IPR8-R848) (74). Here, immunization of infant NHPs with an amine derivative of R848, conjugated to inactivated influenza virus particles, significantly increased virus-specific Ab- and cell-mediated responses and virus clearance and reduced lung pathologic condition postchallenge, as compared with the nonadjuvanted virus vaccine A/Puerto Rico/8/34 (H1N1) (74).

Adjuvant combinations

Finally, we introduce the possibility of using TLR7/8 adjuvants in combination with other non-TLR7/8 adjuvants (Fig. 2). Adjuvant combinations may have synergy/additive/inhibitory effects in

TABLE III. Studies investigating TLR7/8 agonist adsorption to alum

<table>
<thead>
<tr>
<th>Adjuvant</th>
<th>Formulation</th>
<th>Model</th>
<th>Disease Model</th>
<th>Immune Response Activated</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMIP TLR7</td>
<td>BZN TLR7 agonists chemically modified with phosphonates to allow adsorption onto aluminum hydroxide</td>
<td>Mice</td>
<td>OVA, meningococcal disease, and anthrax</td>
<td>Significantly enhanced amount and quality of Ag-specific Ab responses, and titers and serum bactericidal activity (SBA) against MenB</td>
<td>(60)</td>
</tr>
<tr>
<td>SMIP TLR7</td>
<td>Alum-adsorbed BZN TLR7</td>
<td>Mice</td>
<td>Meningococcal disease</td>
<td>Improved potency of glycoconjugate. CRM197-MenC vaccine as compared with alum-adjuvanted vaccine, such as increased anti-MenC Ab titers and SBA against MenC, even with a single immunization.</td>
<td>(62)</td>
</tr>
<tr>
<td>SMIP TLR7</td>
<td>Alum-adsorbed BZN TLR7</td>
<td>Mice</td>
<td>Tetanus, diphtheria, and acellular pertussis (whooping cough)</td>
<td>Formulation of an acellular pertussis vaccine enhanced Bordetella pertussis–specific Th1/Th17 responses, serum IgG2a/b, and the protective efficacy against B. pertussis aerosol challenge</td>
<td>(63)</td>
</tr>
<tr>
<td>SMIP TLR7</td>
<td>Alum-adsorbed BZN TLR7</td>
<td>Mice and rabbit</td>
<td>Staphylococcus aureus</td>
<td>Significant Ab titers, Th1-skewed immune response, reduction of abscess formation, and dermonecrosis</td>
<td>(65)</td>
</tr>
<tr>
<td>SMIP TLR7</td>
<td>Alum-adsorbed BZN TLR7</td>
<td>Adult rhesus macaques</td>
<td>RSV</td>
<td>Env-specific CD4+ T cells in the vaccine-draining LNs, which directly correlated with increased Tfh cell differentiation and germinal center formation</td>
<td>(66)</td>
</tr>
</tbody>
</table>

https://doi.org/10.4049/immunohorizons.1700063
vitro or in vivo, which may or may not have effects on potentiating vaccine-induced responses. Therefore, the objective of optimized coadjuvant formulations may be to induce beneficial outcomes such as 1) the need for fewer vaccine doses, 2) the ability to use lower Ag doses clinically, especially on the context of multivalent vaccines, and 3) the induction of preferential immune polarization not achievable by one adjuvant alone. Perhaps the most studied combination formulation strategy involves simple coadministration TLR7/8 adjuvants with TLR4 agonists, simply admixed (75) or in liposomal and emulsion formulations (76) (Table V). The approach is not limited to TLR-based combinations. Costimulation of R848 and the macrophage-inducible CLR (Mincle) can drive synergistic maturation of human DCs in vitro increased humoral responses against HIV-1 p24 in BALB/c mice in vivo (73).

TABLE IV. Studies investigating TLR7/8 agonist conjugation formulation and adjuvanticity

<table>
<thead>
<tr>
<th>Adjuvant</th>
<th>Formulation</th>
<th>Model</th>
<th>Disease Model</th>
<th>Immune Response Activated</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMIP TLR7</td>
<td>TLR7 agonist conjugation on RrgB pilus Ag formulated with alum</td>
<td>Mice</td>
<td>Pneumococcus</td>
<td>Immunization with TLR7 agonist conjugation on RrgB Ag extended animal survival after lethal challenge with S. pneumonia, with 10-fold Ag dose sparing</td>
<td>(70)</td>
</tr>
<tr>
<td>IMQ-based TLR7/8 agonist</td>
<td>Particle-forming polymer-linked adjuvants</td>
<td>Mice</td>
<td>OVA and HIV</td>
<td>Induction of high-magnitude and persistent local innate immune activation, with associated enhanced CD8^+ T cell responses and Th1-skewed Ab responses</td>
<td>(71)</td>
</tr>
<tr>
<td>IMQ-based TLR7/8 agonist</td>
<td>Coupling adjuvant, immunogenic viral protein to nanoparticle-forming thermoresponsive polymers</td>
<td>Mouse immunization and live viral intranasal challenge</td>
<td>RSV</td>
<td>Elicitation of neutralizing Abs to structure-dependent epitopes on RSV (and other relevant pathogenic Ags)</td>
<td>(72)</td>
</tr>
<tr>
<td>IMQ-based TLR7 agonist CL307</td>
<td>Conjugation to synthetic Pam2C lipopeptide TLR2 agonist</td>
<td>Mice</td>
<td>HIV</td>
<td>Enhanced maturation of human DCs in vitro increased humoral responses against HIV-1 p24 in BALB/c mice in vivo</td>
<td>(73)</td>
</tr>
<tr>
<td>R848</td>
<td>Conjugated to inactivated influenza virus (IPR8-R848)</td>
<td>Neonatal NHP African green monkey</td>
<td>Influenza</td>
<td>TLR7/8-adjuvanted vaccines induced significantly increased virus-specific Ab- and cell-mediated responses, virus clearance, and reduced lung pathologic condition postchallenge, as compared with the nonadjuvanted virus vaccine A/Puerto Rico/8/34(H1N1)</td>
<td>(74)</td>
</tr>
</tbody>
</table>

AGE-SPECIFIC TLR7/8 ADJUVANTICITY IN EARLY LIFE

Childhood vaccination is one of the most effective means of controlling infectious diseases (80, 81). However, adaptive immunity in newborns presents with distinct ontogeny, features, and functionality of T and B cells, making young infants highly reliant on soluble and cellular innate immune mechanisms (5). This results in decreased magnitude of immunogenicity and reduced persistence of functional Abs, both major concerns for early life immunization strategies (5). Historically, solutions to these challenges include the use of multidose pediatric immunization schedules, expanding the length of time between vaccine doses and/or administration of doses later in infancy, all of which increase immunogenicity (82). Alum-based subunit vaccines consisting of purified microbrial products often lack the necessary adjuvant activity to induce and optimally shape an immune response in early life (83). Accordingly, development of rationally designed age-specific vaccine formulations, which may include adjuvants that more effectively enhance immune responses in childhood, are warranted (3, 4). In this context, TLR7/8 agonists have demonstrated unique utility. Unlike agonists of most TLRs that
elicit reduced Th1 cytokine production by newborn and infant leukocytes, IMQs induce robust Th1-polarizing responses from both neonatal and adult DCs alike (33, 36, 59). TLR7/8 stimulation also may uniquely activate B cell responses in early life (84–86).

Infant NHP models, such as the rhesus macaque (*Macaca mulata*), have proven highly useful in furthering evidence of TLR7/8 agonists as vaccine adjuvants in vivo, as TLR8 in most NHPs is highly conserved in terms of both amino acid identity (e.g., 98.6% for rhesus macaque as compared with humans) and the predicted distribution pattern of extracellular LRRs (87). Neonatal and infant NHP leukocytes have also demonstrated human-like TLR7/8 agonist-induced cytokine responses in vitro (33). For example, when conjugated to particulate vaccine Ags, R848 can have adjuvant activity in NHPs immunized in the first month of life (74) that may overcome waning immunity (88).

Infant NHP models, such as the rhesus macaque (*Macaca mulata*), have proven highly useful in furthering evidence of TLR7/8 agonists as vaccine adjuvants in vivo, as TLR8 in most NHPs is highly conserved in terms of both amino acid identity (e.g., 98.6% for rhesus macaque as compared with humans) and the predicted distribution pattern of extracellular LRRs (87). Neonatal and infant NHP leukocytes have also demonstrated human-like TLR7/8 agonist-induced cytokine responses in vitro (33). For example, when conjugated to particulate vaccine Ags, R848 can have adjuvant activity in NHPs immunized in the first month of life (74) that may overcome waning immunity (88). Moreover, immunization of 1-d-old NHPs with the combination of TLR7/8 agonist and Prevnar 13 resulted in accelerated and enhanced anti-–*S. pneumoniae* polysaccharide–specific Ab responses, which inhibited parasites adherence to host cells (76).

TLR8: A SENSOR FOR BACTERIAL RNA

Although the relevance TLR8 in viral RNA recognition and initiation of innate immune responses is well established, its role in sensing bacterial RNA during infections has been proposed (91). Initial studies indicated that TLR8 could trigger human monocytes/macrophages responses to bacterial RNA following transfection of extracts from sonicated *Streptococcus pyogenes* (92).
Moreover, TLR8-dependent detection of bacterial RNA is crucial for triggering murine monocyte activation in response to infection with S. pyogenes (92). Similarly, S. aureus RNA is a TLR8 ligand that can induce IFN-β and IL-12 induction by human monocytes/macrophage in an IRF5-dependent fashion (93). The strongest evidence yet provided linking TLR8-driven innate immune activation by bacterial RNA and enhanced vaccine responses is in the context of live attenuated vaccines. Engagement of TLR8 on human monocytes/DCs by bacterial RNA derived from live Escherichia coli or the live attenuated vaccine BCG initiated Th1-polarized responses to direct Ag-specific CD4⁺ T cells in the generation of Tfh cells, which correlated with enhance Ab-secreting plasmablasts and a more robust Ab response (21). In domestic pigs, immunization with a live bacterial Salmonella vaccine also induced robust anti-Salmonella Tfh cell and Ab responses, but immunization with its heat-killed counterpart did not (21). These findings are additionally noteworthy because pigs have been identified as an appropriate in vivo model to recapitulate the response elicited in humans to TLR7/8 adjuvants (94). Overall, the identification of TLR8 as a primary human sensor of viability-associated PAMPs, known as “vita-PAMPs” (95, 96), and its role as a driver of Tfh cell differentiation, make TLR8 a promising target for Tfh cell–skewing vaccine adjuvants.

CONCLUSIONS

The persistently high global burden of infections in the very young (97) provides a compelling rationale for the continued use and development of safe and effective vaccines (89). The use of new classes of adjuvants may spur a new revolution in vaccinology (98). In this context, the recent advances in the discovery and delivery of TLR7/8 agonists as vaccine adjuvants is of particular translational promise. Small molecule TLR7/8 agonists have demonstrated great potential as vaccine adjuvants, because they directly activate APCs and can enhance both humoral and cellular immune responses, especially Th1 responses. Basic research into nucleic acid–sensing mechanisms, including those focused on TLR7/8, have revealed the central role these pathways play in mediating responses to live attenuated vaccines and how these insights could be harnessed for the design of new vaccines (99). Along with effective adjuvantation, refined vaccine delivery systems, improvements in identifying more efficacious vaccine Ag candidates, and systems vaccinology are key technological and immunological advances fueling the current transformation of vaccinology (100). Rational vaccine design approaches employing immunoengineering may allow for the controlled preparation of vaccine formulations of the desired immunostimulatory properties, particulate size, and Ag load, all of which improve safety by potentially limiting systemic toxicities by their targeted nature (64).

As always, safety considerations will be paramount. A key concern regarding adjuvanted vaccine development is reactogenicity, the propensity of a formulation to cause acute inflammatory events either locally (e.g., erythema, tenderness) or systemically as fever. Of note, vaccine adjuvants are not licensed separately; rather, the adjuvant is a constituent of the licensed vaccine formulation. Historically, both saponin- and emulsion-based adjuvants required extensive research and engineering improvements to produce controlled preparations with less reactogenic profiles yet maintained a strong adjuvant effect (4). Similarly, detergent extraction and genetic modification are successful approaches employed to ameliorate LPS toxicity and prevent excess reactogenicity of outer membrane vesicles (101). Therefore, TLR7/8 adjuvants must be evaluated both alone and as a component of an indicated vaccine formulation. TLR7/8 adjuvant optimization may entail 1) manipulating pharmacokinetic properties that affect compound biodistribution (e.g., limit systemic exposure by covalent attachment of a hydrophobic group) and 2) facilitating interaction with formulations designed to ensure localized codelivery of the Ag and immunostimulatory compound (e.g., nanoparticle encapsulation).

Overall, there are several synthetically defined TLR7/8 adjuvanted vaccine formulations at various stages of clinical development, which may well offer significant advantages compared with current alum-based subunit vaccines. The adaptive response induced in these TLR7/8–focused adjuvant studies can be summed up as producing Th1-like response (IFN-γ–producing CD4⁺ cells and IgG2-producing B cells) with concomitant inhibition of Th2 immunity. Continued evaluation and optimization of these TLR7/8 adjuvant approaches, including potential dose-sparing effects, improved reactogenicity profiles, long-term safety, and efficacy outcomes, are clearly merited.

DISCLOSURES

The author has no financial conflicts of interest.

ACKNOWLEDGMENTS

I am grateful for the mentorship of Drs. Ofer Levy and Michael Wessels and for publication support from Boston Children's Hospital Precision Vaccines Program.

REFERENCES

